About OJO | Search | Ahead of print | Current Issue | Archives | Author Instructions | Reviewer Guidelines | Online submissionLogin 
Oman Journal of Ophthalmology Oman Journal of Ophthalmology
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 8  Wide layoutNarrow layoutFull screen layout Home Print this page  Email this page Small font size Default font size Increase font size


 
CASE REPORT
Year : 2010  |  Volume : 3  |  Issue : 2  |  Page : 86-88 Table of Contents   

Bilateral anophthalmia with septo-optic dysplasia


Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India

Date of Web Publication9-Jun-2010

Correspondence Address:
Manisha Jana
Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi-110 029
India
Login to access the Email id


DOI: 10.4103/0974-620X.64233

PMID: 21217902

Get Permissions

   Abstract 

Bilateral anophthalmia is a rare entity and association with septo-optic dysplasia is an even rare condition. The condition is characterized by absent eyeballs in the presence of eyelids, conjunctiva or lacrimal apparatus. Though anophthalmia can be diagnosed clinically, imaging plays a crucial role in delineating the associated anomalies. In addition, often clinical anophthalmia may prove to be severe microphthalmia on imaging. We describe the imaging findings in an infant with bilateral anophthalmia and septo-optic dysplasia.

Keywords: Anophthalmia, computed tomography, septo-optic dysplasia


How to cite this article:
Jana M, Sharma S. Bilateral anophthalmia with septo-optic dysplasia. Oman J Ophthalmol 2010;3:86-8

How to cite this URL:
Jana M, Sharma S. Bilateral anophthalmia with septo-optic dysplasia. Oman J Ophthalmol [serial online] 2010 [cited 2014 Nov 21];3:86-8. Available from: http://www.ojoonline.org/text.asp?2010/3/2/86/64233


   Introduction Top


Septo-optic dysplasia (de Morsier syndrome) is a rare entity described by Reeves in 1941 as a combination of optic nerve hypoplasia and absence of septum pellucidum. [1] Later on, an association with pituitary hypoplasia was described and septo-optic dysplasia is now often diagnosed clinically in presence of two or more features of the triad. [2] Anophthalmia refers to a complete absence of ocular tissue within the orbits. Microphthalmia is defined as the size of the eyeball at least two standard deviation less than the normal. In addition, often clinical anophthalmia may prove to be severe microphthalmia on imaging. The birth prevalence of anophthalmia is estimated to be three per 100,000 [3] and the condition is commonly bilateral. Anophthalmia/ microphthalmia can either be isolated or syndromic and have complex etiology. When bilateral, anophthalmia has a high rate of associayed central nervous system abnormalities, [4] including septo-optic dysplasia, corpus callosum dysgenesis and pituitary anomalies. [5] Congenital anophthalmia associated with septo-optic dysplasia is a rare entity and not many cases are reported in English literature. [4],[5]


   Case Report Top


A three-month-old female child presented with bilateral absence of eyeballs and delayed developmental milestones. At birth her milestones were normal. There was no history of congenital infections like toxoplasma or rubella or any significant teratogenic drug intake during pregnancy. There was no family history of anophthalmia/ microphthalmia or significant neurological anomalies. On examination, she had absent globes bilaterally. There was no associated dysmorphic facies orother neurological abnormalities. The auditory and motor system examinations were normal. Contrast-enhanced computed tomography (CT) of the orbit and brain was performed. It revealed bilateral absence of the globes (which were replaced by disorganized mass of soft tissue) and optic nerve. The orbital orbital diameter was reduced [Figure 1]. Ocular adnexae (the extraocular muscles, lid and lacrimal apparatus) were present [Figure 2]. CT of the brain revealed absence of septum pellucidum and squared configuration of bilateral frontal horns [Figure 3]. The pituitary gland was normal. She did not have any other associated anomalies. A diagnosis of septo-optic dysplasia with bilateral anophthalmia was made. She was taken up for bilateral, sequential orbital prosthesis implantation. Bilateral orbital prostheses implantation were performed at an interval of six months and the cosmetic outcome was good.


   Discussion Top


The development of the eyeball begins in the fourth week of gestation when optic grooves appear at the cranial end of the embryo. [6] Along with the development of the neural folds to form the forebrain, the optic grooves evaginate and form the optic vesicles. Subsequently, the distal ends of the vesicles grow and the connections with the forebrain constrict to form optic stalks (precursor of the optic nerves). The eyeballs are fully formed during fourth to eight weeks of gestation and the closure occurs along the embryonic fissure. Ganglion cell projections extend centrally through the optic stalk and form the optic nerves, which decussate to form the chiasm. Insults in early embryogenesis affecting the developing optic vesicle can result in anophthalmia (primary or secondary anophthalmia). [6] An insult in later embryogenesis results in degeneration of the visual elements already formed (degenerative anophthalmia).

Anophthalmia/ microphthalmia can be sporadic or syndromic. Several etiological factors have been implicated for example- consanguinity, maternal rubella infection, maternal vitamin A deficiency. Several syndromes including Triploidy syndrome, trisomy 13 ( Patau syndrome More Details), trisomy 18 (Edwards syndrome), Wolf-Hirschhorn syndrome and Several genetic mutations have been associated with anophthalmia/ microphthalmia syndromes. [7] Of all the chromosomal anomalies, only loss-of -function mutation of the SOX2 gene in chromosome 3 has been identified as a major causative factor of bilateral anophthalmia/microphthalmia. [8] The most common phenotypic presentation of this entity is bilateral anophthalmia; however, the 'SOX2 anophthalmia syndrome' can involve multiple anomalies including persistent hyperplastic primary vitreous, optic disc dysplasia, cataracts, mental retardation, neurological abnormalities, facial dysmorphisma, esophageal pathologies, anomalies of the male genitalia. [9] Clinical studies found the SOX2 mutations to be associated with rare variant subtypes of septo-optic dysplasia, anterior pituitary hypoplasia and hypogonadotropic hypogonadism. [10]

Anophthalmia presents clinically as the absence of eyeballs. Associated neurological anomalies can manifest as mental retardation or developmental delay. Presentation of septo-optic dysplasia can be variable, depending on the CNS and endorinological anomalies. Imaging plays a crucial role in defining the ophthalmic and brain anomalies. In anophthalmia, the eyeball is completely absent and replaced by a disorganized soft tissue structure. Histologic examination has shown absence of neuroectodermal tissue. [11] On magnetic resonance imaging (MRI) the orbital soft tissue shows intermediate signal intensity on T1 weighted and low intensity on T2 weighted images. The ocular adnexae (the lid, conjunctiva, lacrimal glands) are present and orbital volume is reduced. Optic pathway and the extraocular muscles are variably present. [7] In microphthalmia the size of the eyeball is at least two standard deviation less than the normal population, with a smaller orbital size. However, the signal intensity of the lens and vitreous appears normal. Associated intracranial anomalies include absence of the anterior pituitary, agenesis of corps callosum, absence of septum pellucidum, dilatation of the ventricles, polymicrogyria. MRI is the ideal modality of imaging the visual pathway and should be done wherever feasible. The imaging protocol should be include T2weighted coronal images of the barin and the orbits for evaluation of the optic pathways and axial T1 and T2 weighted brain images for structural evaluation.

The management of anophthalmia is difficult. Anophthalmia can be treated with enucleation with implantationof prosthesis However, severe anophthalmia is often associated with orbital hypoplasia and poor outcome after prosthesis impantation. To conclude, bilateral anophthalmia is usually diagnosed clinically, but imaging plays a pivotal role in delineating the optic neural pathway and CNS anomalies, which have implications in prognosis.

 
   References Top

1.Reeves DL. Congenital absence of the septum pellucidum. Bull Johns Hopkins Hosp 1941;69:61-71.  Back to cited text no. 1      
2.Roessmann U. Septo-optic dysplasia or de Morsier syndrome. J Clin Neuroophthalmol 1989;9:156-9.  Back to cited text no. 2  [PUBMED]    
3.Morrison D, FitzPatrick D, Hanson I, Williamson K, van Heyningen V, Fleck B, et al. National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology. J Med Genet 2002;39:16-22.   Back to cited text no. 3  [PUBMED]  [FULLTEXT]  
4.Jacquemin C, Mullaney PB, Bosley TM. Ophthalmological and intracranial anomalies in patients with clinical anophthalmos. Eye (Lond) 2000;14:82-7.  Back to cited text no. 4  [PUBMED]    
5.Miyako K, Takemoto M, Ihara K, Kuromaru R, Kohno H, Hara T. A case of growth hormone and gonadotropin deficiency associated with unilateral anophthalmia, microphallus, cryptorchidism and mental retardation. Endocr J 2002;49:15-20.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]  
6.White VA, Rootman J. Eye. In: Dimmick R, editor. Developmental Pathology of the Embryo and Fetus. 1 st ed. Philadelphia, Pa: Lippincott; 1992. p. 401-23.   Back to cited text no. 6      
7.Verma AS, Fitzpatrick DR. Anophthalmia and microphthalmia. Orphanet J Rare Dis 2007;2:47.  Back to cited text no. 7  [PUBMED]  [FULLTEXT]  
8.Fantes J, Ragge NK, Lynch SA, McGill NI, Collin JR, Howard-Peebles PN, et al. Mutations in SOX2 cause anophthalmia. Nat Genet 2003;33:461-3.  Back to cited text no. 8  [PUBMED]  [FULLTEXT]  
9.Ragge NK, Lorenz B, Schneider A, Bushby K, de Sanctis L, de Sanctis U, et al. SOX2 anophthalmia syndrome. Am J Med Genet A 2005;135:1-8.  Back to cited text no. 9  [PUBMED]  [FULLTEXT]  
10.Kelberman D, Dattani MT. Septo-optic dysplasia - novel insights into the aetiology. Horm Res 2008;69:257-65.  Back to cited text no. 10  [PUBMED]  [FULLTEXT]  
11.Albernaz VS, Castillo M, Hudgins PA, Mukherji SK. Imaging findings in patients with clinical anophthalmos. AJNR Am J Neuroradiol 1997;18:555-61.  Back to cited text no. 11  [PUBMED]  [FULLTEXT]  


    Figures

  [Figure 1], [Figure 2], [Figure 3]


This article has been cited by
1 Septo-optic dysplasia plus: a case report
Lepsa Zoric,Simon Nikolic,Milan Stojcic,Dragana Zoric,Sinisa Jakovljevic
BMC Research Notes. 2014; 7(1): 191
[Pubmed]
2 First implication ofSTRA6mutations in isolated anophthalmia, microphthalmia, and coloboma: A new dimension to theSTRA6phenotype
Jillian Casey,Riki Kawaguchi,Maria Morrissey,Hui Sun,Paul McGettigan,Jens E. Nielsen,Judith Conroy,Regina Regan,Elaine Kenny,Paul Cormican,Derek W. Morris,Peter Tormey,Muireann Ní Chróinín,Breandan N. Kennedy,SallyAnn Lynch,Andrew Green,Sean Ennis
Human Mutation. 2011; 32(12): 1417
[Pubmed]



 

Top
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Case Report
    Discussion
    References
    Article Figures

 Article Access Statistics
    Viewed2397    
    Printed118    
    Emailed0    
    PDF Downloaded313    
    Comments [Add]    
    Cited by others 2    

Recommend this journal